21 research outputs found

    Biomechanical defects and rescue of cardiomyocytes expressing pathologic nuclear lamins

    Get PDF
    Given the clinical impact of LMNA cardiomyopathies, understanding lamin function will fulfill a clinical need and will lead to advancement in the treatment of heart failure. A multidisciplinary approach combining cell biology, atomic force microscopy (AFM) and molecular modeling was used to analyze the biomechanical properties of human lamin A/C gene (LMNA) mutations (E161K, D192G, N195K) using an in vitro neonatal rat ventricular myocyte (NRVM) model

    The 9p21 susceptibility locus for coronary artery disease and the severity of coronary atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Case-control Genome-Wide Association Studies (GWAS) have identified single nucleotide polymorphisms (SNPs) at the 9p21 locus as risk factors for coronary artery disease (CAD). The locus does not contain a clear candidate gene. Hence, the results of GWAS have raised an intense interest in delineating the basis for the observed association. We analyzed association of 4 SNPs at the 9p21 locus with the severity and progression of coronary atherosclerosis, as determined by serial quantitative coronary angiograms (QCA) in the well-characterized Lipoprotein Coronary Atherosclerosis Study (LCAS) population. The LCAS is a randomized placebo-control longitudinal follow-up study in patients with CAD conducted to test the effects of fluvastatin on progression or regression of coronary atherosclerosis.</p> <p>Methods</p> <p>Extensive plasma lipid levels were measured at the baseline and 2 1/2 years after randomization. Likewise serial QCA was performed at the baseline and upon completion of the study. We genotyped the population for 4 SNPs, previously identified as the susceptibility SNPs for CAD in GWAS, using fluorogenic 5' nuclease assays. We reconstructed the haplotypes using Phase 2, analyzed SNP and haplotype effects using the Thesias software as well as by the conventional statistical methods.</p> <p>Results</p> <p>Only Caucasians were included since they comprised 90% of the study population (332/371 with available DNA sample). The 4 SNPs at the 9p21 locus were in tight linkage disequilibrium, leading to 3 common haplotypes in the LCAS population. We found no significant association between quantitative indices of severity of coronary atherosclerosis, such as minimal lumen diameter and number of coronary lesions or occlusions and the 9p21 SNPs and haplotypes. Likewise, there was no association between quantitative indices of progression of coronary atherosclerosis and the SNPs or haplotypes. Similarly, we found no significant SNP or haplotype effect on severity and progression of coronary atherosclerosis.</p> <p>Conclusion</p> <p>We conclude the 4 SNPs at the 9p21 locus analyzed in this study do not impart major effects on the severity or progression of coronary atherosclerosis. The effect size may be very modest or the observed association of the CAD with SNPs at the 9p21 locus in the case-control GWAS reflect involvement of vascular mechanisms not directly related to the severity or progression of coronary atherosclerosis.</p

    Candidate genetic analysis of plasma high-density lipoprotein-cholesterol and severity of coronary atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plasma level of high-density lipoprotein-cholesterol (HDL-C), a heritable trait, is an important determinant of susceptibility to atherosclerosis. Non-synonymous and regulatory single nucleotide polymorphisms (SNPs) in genes implicated in HDL-C synthesis and metabolism are likely to influence plasma HDL-C, apolipoprotein A-I (apo A-I) levels and severity of coronary atherosclerosis.</p> <p>Methods</p> <p>We genotyped 784 unrelated Caucasian individuals from two sets of populations (Lipoprotein and Coronary Atherosclerosis Study- LCAS, N = 333 and TexGen, N = 451) for 94 SNPs in 42 candidate genes by 5' nuclease assays. We tested the distribution of the phenotypes by the Shapiro-Wilk normality test. We used Box-Cox regression to analyze associations of the non-normally distributed phenotypes (plasma HDL-C and apo A-I levels) with the genotypes. We included sex, age, body mass index (BMI), diabetes mellitus (DM), and cigarette smoking as covariates. We calculated the q values as indicators of the false positive discovery rate (FDR).</p> <p>Results</p> <p>Plasma HDL-C levels were associated with sex (higher in females), BMI (inversely), smoking (lower in smokers), DM (lower in those with DM) and SNPs in <it>APOA5, APOC2</it>, <it>CETP, LPL </it>and <it>LIPC </it>(each q ≤0.01). Likewise, plasma apo A-I levels, available in the LCAS subset, were associated with SNPs in <it>CETP</it>, <it>APOA5</it>, and <it>APOC2 </it>as well as with BMI, sex and age (all q values ≤0.03). The <it>APOA5 </it>variant S19W was also associated with minimal lumen diameter (MLD) of coronary atherosclerotic lesions, a quantitative index of severity of coronary atherosclerosis (q = 0.018); mean number of coronary artery occlusions (p = 0.034) at the baseline and progression of coronary atherosclerosis, as indicated by the loss of MLD.</p> <p>Conclusion</p> <p>Putatively functional variants of <it>APOA2</it>, <it>APOA5, APOC2</it>, <it>CETP, LPL</it>, <it>LIPC </it>and <it>SOAT2 </it>are independent genetic determinants of plasma HDL-C levels. The non-synonymous S19W SNP in <it>APOA5 </it>is also an independent determinant of plasma apo A-I level, severity of coronary atherosclerosis and its progression.</p

    Passion and Determination Are the Genesis of Research

    No full text

    Established and Emerging Mechanisms in the Pathogenesis of Arrhythmogenic Cardiomyopathy: A Multifaceted Disease

    No full text
    Arrhythmogenic cardiomyopathy (ACM) is a heritable myocardial disease that manifests with cardiac arrhythmias, syncope, sudden cardiac death, and heart failure in the advanced stages. The pathological hallmark of ACM is a gradual replacement of the myocardium by fibroadiposis, which typically starts from the epicardium. Molecular genetic studies have identified causal mutations predominantly in genes encoding for desmosomal proteins; however, non-desmosomal causal mutations have also been described, including genes coding for nuclear proteins, cytoskeleton componentsand proteins involved in excitation-contraction coupling. Despite the poor prognosis, currently available treatments can only partially control symptoms and to date there is no effective therapy for ACM. Inhibition of the canonical Wnt/&beta;-catenin pathway and activation of the Hippo and the TGF-&beta; pathways have been implicated in the pathogenesis of ACM. Yet, our understanding of the molecular mechanisms involved in the development of the disease and the cell source of fibroadiposis remains incomplete. Elucidation of the pathogenesis of the disease could facilitate targeted approaches for treatment. In this manuscript we will provide a comprehensive review of the proposed molecular and cellular mechanisms of the pathogenesis of ACM, including the emerging evidence on abnormal calcium homeostasis and inflammatory/autoimmune response. Moreover, we will propose novel hypothesis about the role of epicardial cells and paracrine factors in the development of the phenotype. Finally, we will discuss potential innovative therapeutic approaches based on the growing knowledge in the field

    Lamin A/C Cardiomyopathy: Implications for Treatment

    No full text
    Purpose of review: The purpose of this review is to provide an update on lamin A/C (LMNA)-related cardiomyopathy, and discuss the current recommendations and progress in the management of this disease. LMNA-related cardiomyopathy, an inherited autosomal dominant disease, is one of the most common causes of dilated cardiomyopathy, and is characterized by steady progression toward heart failure and high risks of arrhythmias and sudden cardiac death Recent findings: We discuss recent advances in the understanding of the molecular mechanisms of the disease including altered cell biomechanics, which may represent novel therapeutic targets to advance the current management approach, which relies on standard heart failure recommendations. Future therapeutic approaches include repurposed molecularly-directed drugs, siRNA-based gene silencing and genome editing. Summary: LMNA-related cardiomyopathy is the focus of active in vitro and in vivo research, which is expected to generate novel biomarkers and identify new therapeutic targets. LMNA-related cardiomyopathy trials are currently underwa

    Piezo1 Channel as a Potential Target for Hindering Cardiac Fibrotic Remodeling.

    Get PDF
    Fibrotic tissues share many common features with neoplasms where there is an increased stiffness of the extracellular matrix (ECM). In this review, we present recent discoveries related to the role of the mechanosensitive ion channel Piezo1 in several diseases, especially in regulating tumor progression, and how this can be compared with cardiac mechanobiology. Based on recent findings, Piezo1 could be upregulated in cardiac fibroblasts as a consequence of the mechanical stress and pro-inflammatory stimuli that occurs after myocardial injury, and its increased activity could be responsible for a positive feedback loop that leads to fibrosis progression. The increased Piezo1-mediated calcium flow may play an important role in cytoskeleton reorganization since it induces actin stress fibers formation, a well-known characteristic of fibroblast transdifferentiation into the activated myofibroblast. Moreover, Piezo1 activity stimulates ECM and cytokines production, which in turn promotes the phenoconversion of adjacent fibroblasts into new myofibroblasts, enhancing the invasive character. Thus, by assuming the Piezo1 involvement in the activation of intrinsic fibroblasts, recruitment of new myofibroblasts, and uncontrolled excessive ECM production, a new approach to blocking the fibrotic progression can be predicted. Therefore, targeted therapies against Piezo1 could also be beneficial for cardiac fibrosis

    Microfabricated cantilevers for parallelized cell-cell adhesion measurements

    No full text
    Single-cell adhesion measured with atomic force microscopy (AFM) offers outstanding time and force resolution and allows the investigation of many important phenomena with unmatched precision. However, this technique suffers from serious practical limitations that hinder its effective application to a broader set of situations. Here we propose a different strategy based on the fabrication of large cantilevers and on the culture of the cells directly on them. Cantilevers are fabricated by standard micromachining, with an active area of 300 7 300 \u3bcm. A wedged structure is created so that the cantilever surface lies parallel to the substrate when mounted on an AFM system, so that the adhesion measurement probes the whole surface area at the same time. Thanks to the large area, cells can be seeded and grown on the cantilevers the day before the experi- ment, and let recover to optimal condition for the experiment. We used Human Embryonic Kidney cells, HEK 293A, to demonstrate the measurement of adhesion forces of up to 100 cells in parallel, and obtain a straightforward measurement of the average single cell adhesion energy. Our approach can improve significantly the cell-cell and cell-substrate adhesion statistics, reduce the experiment time and allow the investigation of the adhesion properties of cells that do not grow well in solution or on low adherent substrates, or that develop their characteristic features only after several hours or days of culture on a solid and adherent substrate
    corecore